

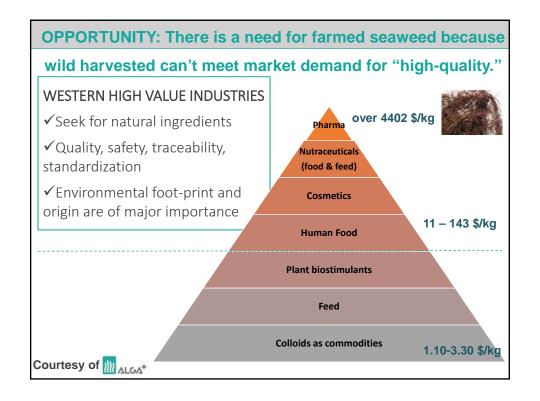
Uses of Seaweeds

- •Food
- Feed
- •Fertilizer
- Medicine
- Cosmetics
- •Textile
- •Paper
- •Leather

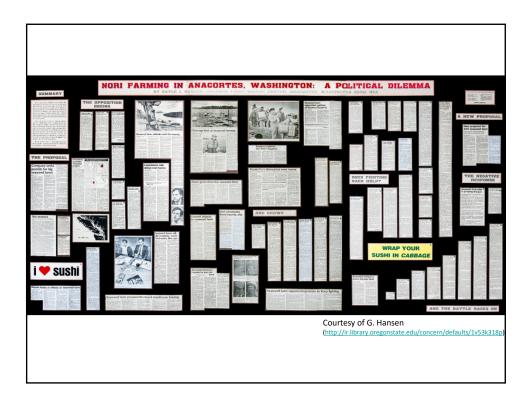
- •Major sources of phycocolloids (alginates, carrageenans & agars)
- Biofuels

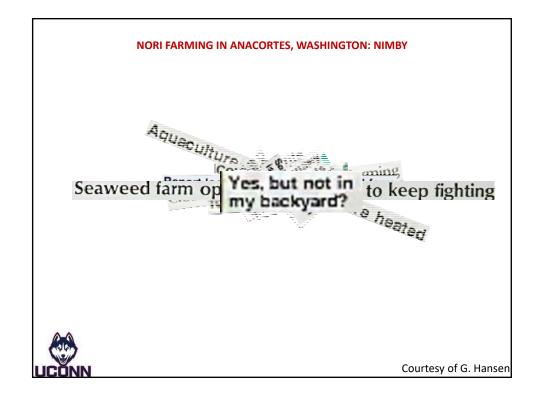
Alginates are hydrocolloidal products used for thickening, suspending, stabilizing or gel-forming from kelp (*Saccharina* & *Laminaria*) and fucoids (*Ascophyllum* & *Fucus*).

Ice Cream, Salad Dressing, Cosmetics, Latex Paint, Textiles, Paper, Ceramics, Dentistry, Regulates water behavior, & Biodegradable plastics



- -Agar (hydrocolloid = phycocolloid)
 - Produced by red alga Gelidium & Gracilaria.
 - Solidifier of nutrient culture media for growth of bacteria; biotechnology; foods.

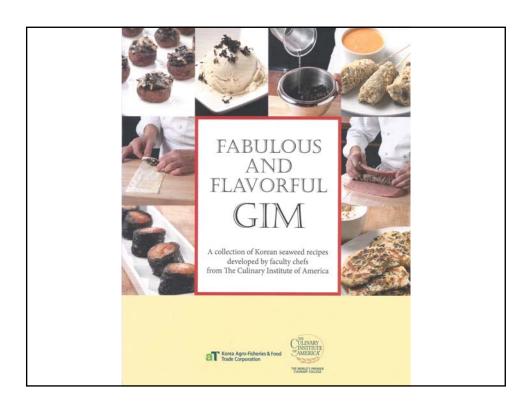


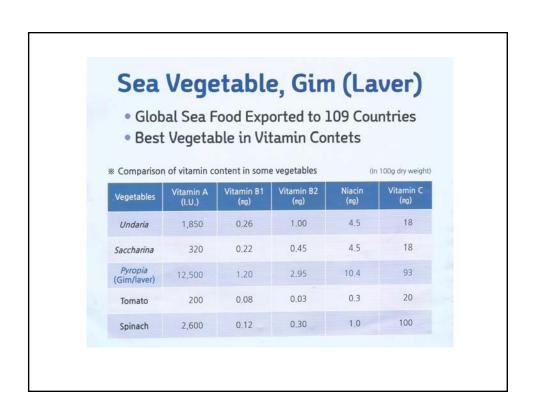


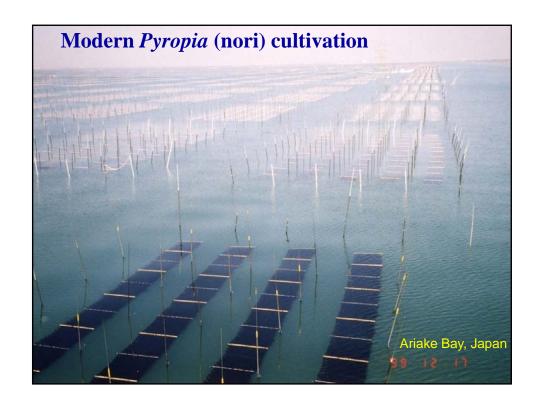
Obstacles to the Growth of Seaweed Aquaculture in the USA

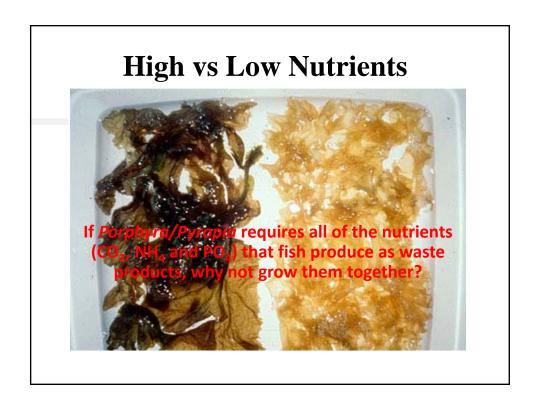
- Coastal zone use conflicts
- ✓ The Social License from the Public to Support Permitting
 - ✓ Nutrient bioextraction, water quality improvement, habitat restoration, new habitat & diversity enhancement
- Permit, licensing, lease application processes
- Compliance with environmental regulations
- Cost effectiveness of the aquaculture (culture & breeding technologies)
- Processing
- ✓ Food safety (development of science to inform regulatory agencies)
- ✓ Workforce Development (The working waterfront)

Nutritional Value of Pyropia

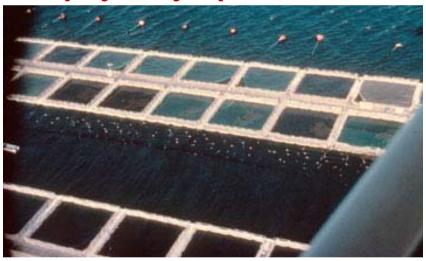

100 g of this sea vegetable provides:


- 30 50 g protein
- Vitamin A (12,500 I.U)
- Vitamin B₂ (2.95 mg)
- Vitamin B₁₂ (0.06 mg)
- Vitamin C (93 mg)

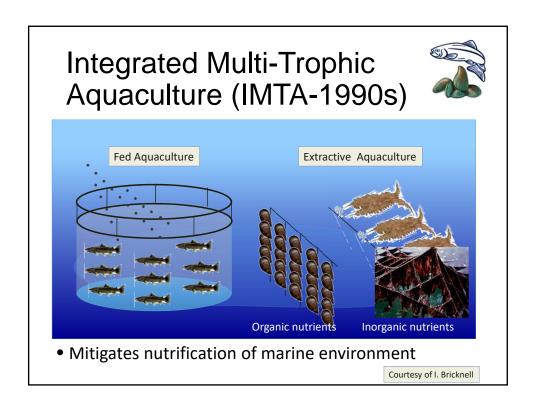


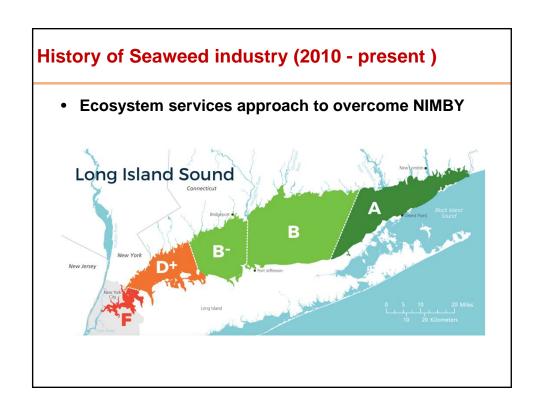

Porphyra/Pyropia species

- Simple, flat sheet gametophyte (high SA/V)
- 1-2 cell layers: all productive
- fast growth (up to 24% d-1)
- high nutrient accumulation (possibility of 6-8% N DW)
- high protein content (up to 50% DW)
- salable harvest (nori, high-value r-phycoerythrin



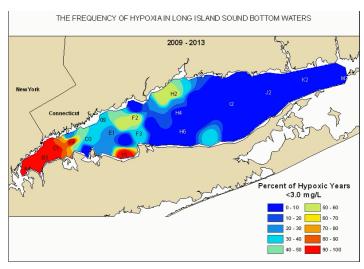
Porphyra/Pyropia – Salmon

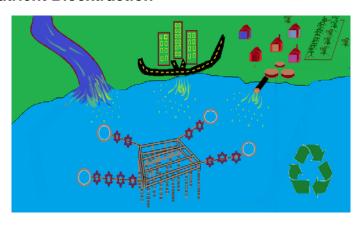



(courtesy I. Levine)

"Balanced" Ecosystem Approach (IMTA)

- Ackefors (1999, pers. comm.)
 - 7.0 kg of P and 49.3 kg of N released into the water column per ton of fish per year
 - How many *Porphyra/Pyropia* nets are necessary for the bioremediation of this nutrification of coastal waters?
 - 27 nets for P
 - 22 nets for N


(McVey et al. 2002)


History of Seaweed industry (2010 - present)


• Ecosystem services approach to overcome NIMBY

History of Seaweed industry (2010 - present)

- Ecosystem services approach to overcome NIMBY
- Nutrient Bioextraction

Gracilaria spp.

Uses (~ \$1.78 billion annual value, FAO 2018)

- Agar (multiple grades)
- Fresh Sea Vegetable
- Animal Feeds (fish, shrimp)
- Ornamental Marine Plants
- Fertilizer
- Potential as Antiviral Pharmaceutical
- Biofuels

Gracilaria tikvahiae (red seaweed, a summer crop)*

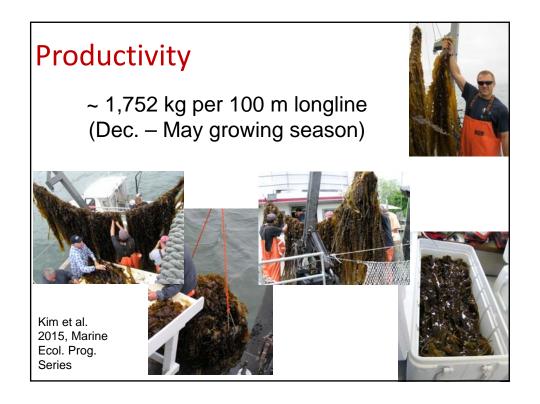
- Growing season: June Oct. (> 15 °C)
- Commercial value of Gracilaria ~ \$1.78 billion annual value, FAO 2018

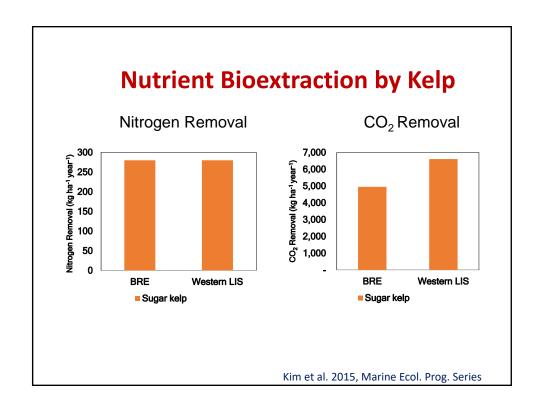
Rocha et al. 2019. Characterization of agar from cultivated *Gracilaria tikvahiae*:... Food Hydrocolloids 89:260-271. https://doi.org/10.1016/j.foodhyd.2018.10.048.

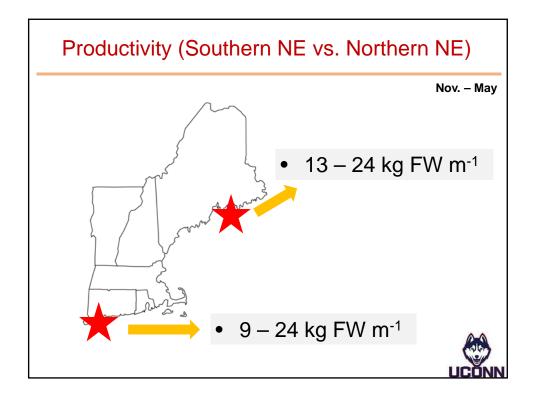
Gracilaria nursery systems

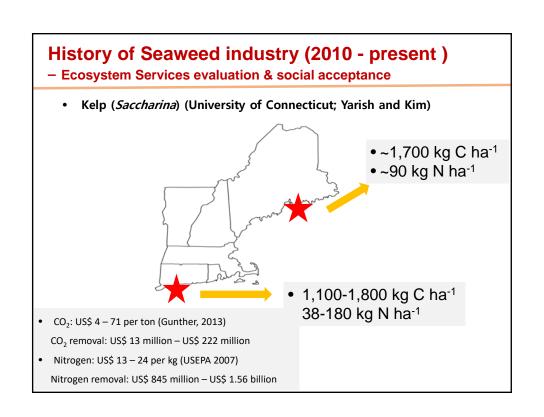
Redmond, S., L. Green, C. Yarish, J. Kim, and C. Neefus. 2014. *New England Seaweed Culture Handbook-Nursery Systems*. Connecticut Sea Grant CTSG-14-01; R/A 38. 93 pp. PDF file. URL:

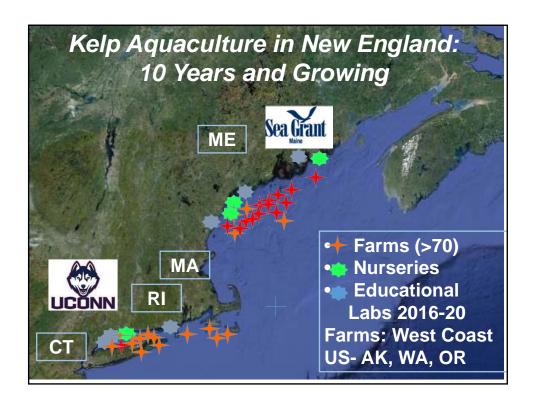
http://digitalcommons.uconn.edu/seagrantweedcult/1/

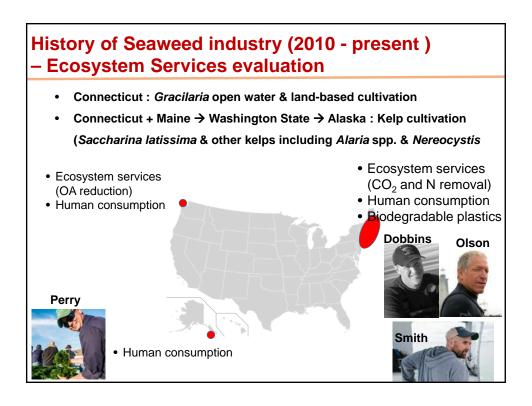

Saccharina (sugar kelp, brown seaweed, a winter crop)

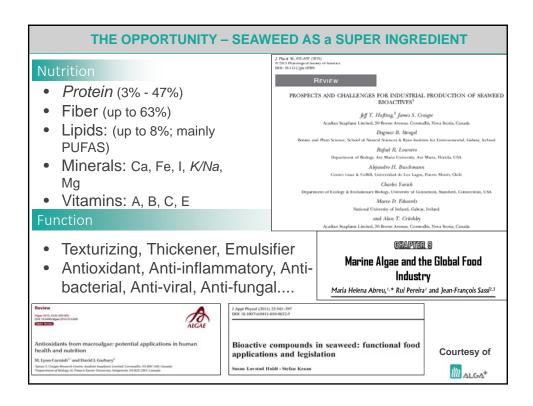

- Kelp is the most widely cultivated species in the world (~\$5.53 billion annual value)
- Human food and source of alginates (colloid & biomedical)
- Growing season: Nov. May (< 15 °C or < 60 °F)
- Nutrient bioextraction (ecosystem services)
- Biofuels

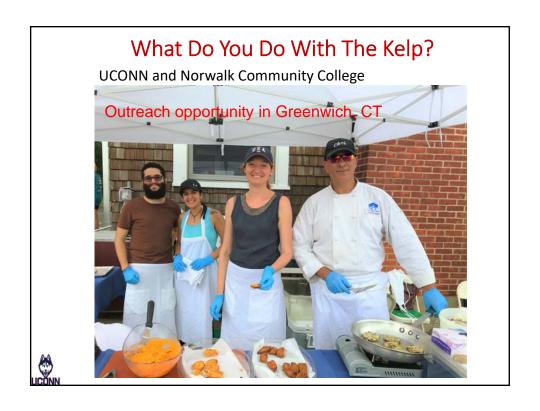












Overview of maximum levels (Europe) for arsenic, cadmium, lead, and mercury

Hazard	Feed ^a	Foodb,c	Food supplements
Arsenic (total)	40 mg/kg	No standard for seaweed	No standard for seaweed
Arsenic (inorganic) 2 mg/kg	No standard for seaweed	No standard for seaweed
Cadmium	1 mg/kg	No standard for seaweed	3.0 mg/kg ww
Lead	10 mg/kg	No standard for seaweed	3.0 mg/kg ww
Mercury	0.1 mg/kg	No standard for seaweed	0.10 mg/kg ww

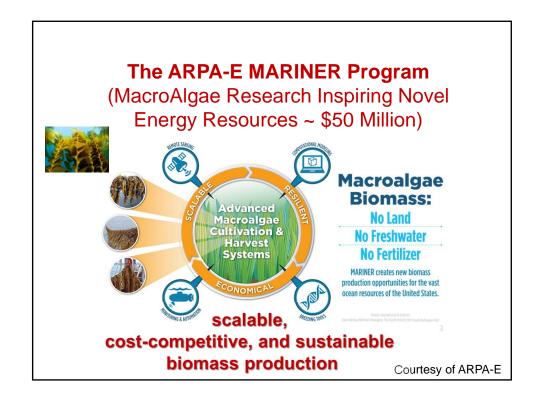
^a Directive 2002/32/EC specifies undesirable substances in animal feed. The level is relative to a feed with a moisture content of 12%.

Future of Seaweed Industry in the US (present -)

Study: Seaweed in Cow Feed Reduces Methane Emissions Almost Entirely

Seaweeds have a wide range of potential uses:
antibiotic, anti-oxidant, anti-inflammatory,
immunostimulants, prebiotics, etc. Different species of

macroalgae differ in their anti-methanogenic efficiency


An Australian study found 99% methane reduction with 2% (feed DM) Asparagopsis taxiformis in vitro

Courtesy of A. Hristov

^b Regulation (EC) 1881/2006 on setting maximum levels for certain contaminants in foodstuffs. "The maximum level applies to the food supplements as sold."

^c Kim, J.K., G. Kraemer and C. Yarish. 2019 (June). Food safety evaluation of farm grown *Gracilaria tikvahiae* and *Saccharina latissima* in Long Island Sound & New York Estuary. Algal Research 40, June 2019 (https://doi.org/10.1016/j.algal.2019.101484).

Development of Scalable Coastal and Offshore Macroalgal Farming (PI M. Stekoll, UAF)

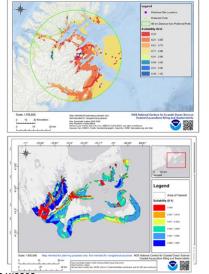
Project Vision

Develop replicable model farms on the East Coast and Alaska that meet the cost criteria of less than \$80 per dry metric tonne of macroalgal production of sugar kelp, Saccharina latissima.

Project Impact

Transformative development of efficient, integrated seaweed farm design and operations (low CapEx & OpEx) that can be automated from direct seeding onto ropes though harvest and re-seeding

Kodiak, AK harvest



Technical Details: Scalability Assessment

- Scalability for Alaska
 - Depth 10-100 m
 - Farm size 10-1,000 ha
 - Total possible Alaska farm area = ~16.5 million ha
 - Within 50 Km of ports: >3.5 million ha

Scalability for NE

- Depth 10-100 m
- Within 50 nm of a port
- Farm size 20+ ha.
- Total possible NE farm area = ~ 7.5 million ha
- > 1 million ha may fit suitability criteria

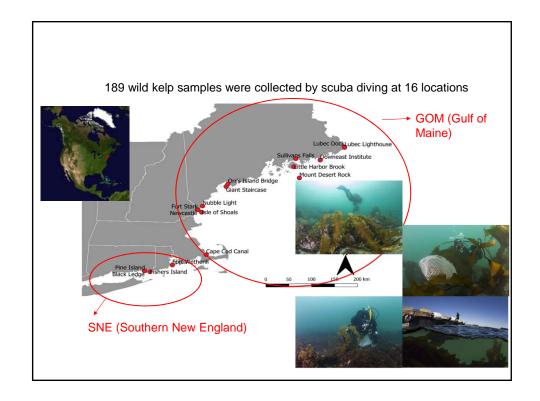
Thanks to Coastal Aquaculture Siting and Sustainability NOAA / NOS / NCCOS Virginia C. Crothers, M.S.¹, Seth J. Theuerkauf, Ph.D.¹, Lisa C. Wickliffe, Ph.D.¹, Kenneth L. Riley, Ph.D.², James A. Morris, Jr., Ph.D.²Jon Jossart, M.S.¹

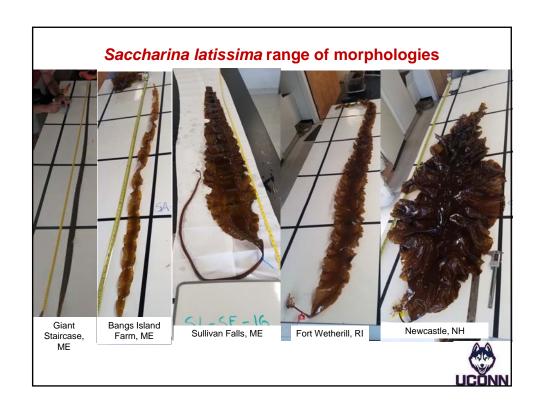
CSS, Inc. for NOAA NOS/NCCOS, Beaufort, NC. ²NOAA NCCOS, Beaufort, NC

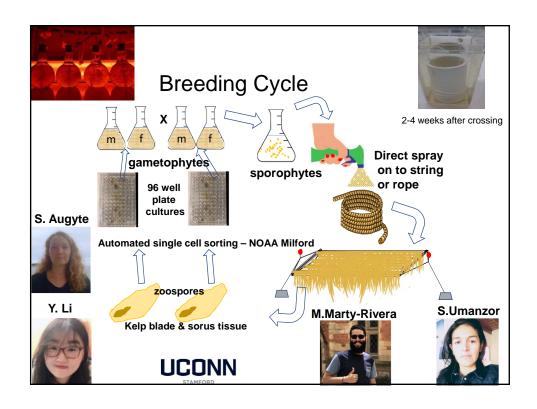
Selective Breeding Technologies for Scalable Offshore Seaweed Farming

Project Vision

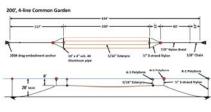
Develop tools to identify and breed superior sugar kelp cultivars, improving productivity 10 to 20% per generation.


Project Impact


Tools and methodologies created and tested will be broadly applicable to rapid improvement of seaweed breeding and cultivation in the U.S.

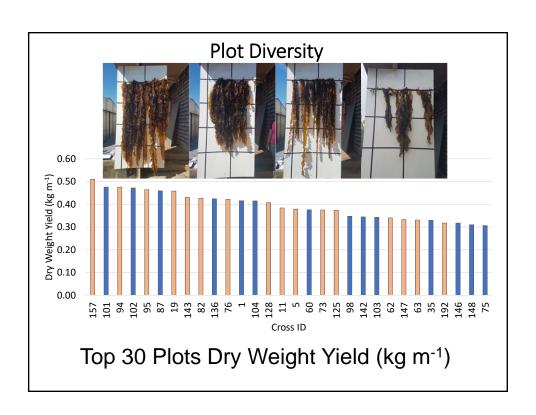


University of Alaska USDA/ Cornell University HudsonAlpha, NOAA Fisheries NEFSC



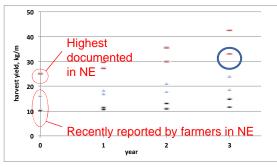
Domestication Program

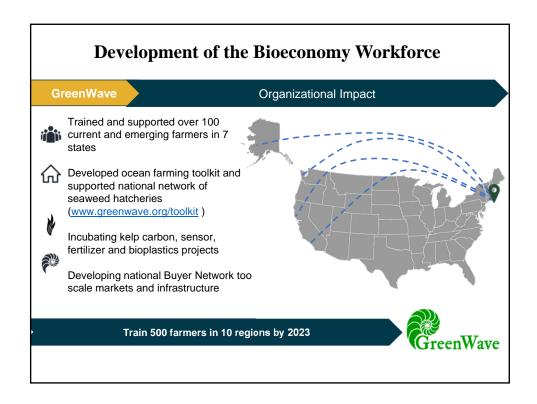
"Common Garden" Comparisons


- Created and planted 326 (Yr.1) & 380 (yr.2) unique families plus reference crosses in The Gulf of Maine (UNH-2019&2020) & Southern New England (GW-2020)
- Demonstrated ability to generate single gametophytes males and females in sufficient quantity in less that 6 months thus conceivably producing selective improvements <u>annually.</u>

Phenotypying & genotyping still underway; Fresh Wt, Dry Wt, Composition of sugars & ions, growth rate, maturity, morphological traits & microbiome

2019 Phenotyping for GMO


- 8 personnel from WHOI/CA Goudey/UNH/GreenWave harvested farm in 1 day
- 14 WHOI/UCONN/GreenWave personnel phenotyped over 3 days (+1 MBL)
- Measurements for each family:
 - Plot (1m) photo documented
 - Total Wet Weight, 5 random sample wet weights, sample dry weight
 - 15 individual blades randomly selected from sample weights for 9 traits
 - blade length, blade width (2), thickness of blade
 - stipe length & width, reproductive status (sorus formation)
 - fouling &/or evidence of pathogen damage


From L to R (top row) M. Stephens (GW), C. Yarish (UCONN), J. Pegnataro (GW), S. Lindell (WHOI), M. Marty-Rivera (UCONN) (bottom row), M. Aydlett (WHOI), S. Augyte (UCONN), D. Bailey (WHOI), M. Currie (WHOI), S. Umanzőr (UCONN)

NN)

Potential Improvements in Yield with 10% and 20% improvement/year

Algae Cultivation Extension Short-courses (ACES) Part-1 Seaweeds http://www.algaefoundationatec.org/aces_intro.html

Aquaculture Introduction

- Overview: What is aquaculture, why is it important
- Dana Morse "What is Aquaculture?"
- International Mariculture of Seaweeds; An introduction to Seaweed Aquaculture. Dr. Charles Yarish
- From Sea to Table, University of Connecticut Research Benefits
- Seaweed Culture in New England: Overview of Seaweeds and Their Uses
- Seaweed in New England: A Seaweed Visionary. Interview with Shep Erhart, Maine Coast Sea Vegetables **Economically important species**
- Seaweed culture in New England: Kelp, Gracilaria, Chondrus, Porphyra, Palmaria (Dulse), Kappaphycus and Eucheuma

Seaweed Aquaculture: Nursery Elements of a Seaweed Lab

- Introduction to Sugar Kelp Nursery Methods. University of New England

Seaweed Aquaculture: Leasing

Permits/Leases/Regulations. Jon Lewis, Maine Dept. of Marine Resources

Seaweed Farm design and gear

• A Simple Method of Setting Seaweed Long Lines, Tollef Olson, President, Ocean's Balance

Outplanting seaweed seed :

Field clips of outplanting seaweed lines with Maine Sea Farms

Seaweed Husbandry:

Winter on a Kelp Farm, Ocean Approved

Seaweed Aquaculture: Farming

- Seaweed Farms of MaineMaine Sea Farms Explains Kelp Farming
- Seaweed Farming, Tollef Olson, Oceans Balance Inc.

- Harvesting:
 Pulling Seaweed Lines (Ocean Approved)
- Harvesting Kelp with Maine Sea Farms, spring 2018

Seaweed Processing/marketing:

- Greenhouse drying of seaweed with Maine Sea Farms
 Seaweed Product Forms, Lisa Scali, Ocean Approved Inc.

Acknowledgements

U.S. Dept. of Energy ARPA-E (Contracts: DE-AR0000912;

DE-AR0000911; and DE-AR000915)

Advanced Research Projects Agency • ENERGY

Acknowledgements

• U.S. Dept. of Energy ARPA-E (Contracts: DE-AR0000912;

DE-AR0000911; and **DE-AR000915**)

- Connecticut, Maine & MASS Sea Grant College Programs
- NOAA SBIR I and II (Ocean Approved)
- U.S. EPA Long Island Sound Study's Long Island Sound Futures Fund, National Fish and Wildlife Foundation
- Maine Aquaculture Innovation Center

 U.S. Department of Agriculture, National Institute of Food and Agriculture (NIFA)

